Magnetic Particle Spectrometry
Magnetic nanoparticles are forming a promising research field in modern science. Especially in medical imaging and therapy nanoparticles may act as solution in various problems. At our institute we develop imaging systems as well as own contrast agents. A correct characterization of these particles is important for the model based reconstruction technique and for particle synthesis quality control. To characterize those particles the institute of medical engineering developed a magnetic particle spectrometer (MPS). This system is basically a zero dimensional magnetic particle imaging device. It measures the particle time response to a varying magnetic field, but resigns the gradient field that is necessary for the spatial resolution.
The correct characterization demands a high homogeneous field generator to eliminate errors due to different excitation and reception. Furthermore the sensitivity has to be maximized, to make small samples measurable and to measure low concentrations of the material in test. This leads to small coils with high homogeneous field profiles, two conflicting arguments. The institute of medical engineering is working on the optimization of those coil geometries, the optimization of the signal chain, and the development of new applications for magnetic particle spectroscopes like the hybrid reconstruction method.
Magnetic Particle Spectrometry at the Institute of Medical Engineering.
Publications
- [ 2020 ]
- [ 2019 ]
- [ 2018 ]
- [ 2017 ]
- [ 2016 ]
- [ 2015 ]
- [ 2014 ]
- [ 2013 ]
- [ 2012 ]
- [ 2011 ]
- [ 2010 ]
- [ 2009 ]
-
Temperature-dependent spectrum measurement using a magnetic particle spectrometer, International Journal on Magnetic Particle Imaging, 6(2), Suppl 1, 2020, DOI: https://doi.org/10.18416/IJMPI.2020.2009034.
- [ BibTeX ]
-
Efficient hybrid 3D system calibration for magnetic particle imaging systems using a dedicated device, Scientific Reports, 10(1), 2020, DOI: 10.1038/s41598-020-75122-5.
-
Sample Temperature Control in a Three-Dimensional Magnetic Particle Spectrometer, 211, 2019.
- [ BibTeX ]
-
Measuring magnetic moments of polydisperse ferrofluids utilizing the inverse Langevin function, Physical Review B, 100(13), 134425, 2019, DOI: 10.1103/PhysRevB.100.134425.
-
Tracking the Growth of Superparamagnetic Nanoparticles with an In-Situ Magnetic Particle Spectrometer (INSPECT), Scientific Reports, 9(10538), 2019, DOI: https://doi.org/10.1038/s41598-019-46882-6.
-
Influence of Excitation Signal Coupling on Reconstructed Images in Magnetic Particle Imaging, In: Bildverarbeitung für die Medizin 2018. Informatik aktuell, Springer Vieweg, , 92–97, 2018, DOI: 10.1007/978-3-662-56537-7_36.
-
Optimizing Transmit Coils for a Magnetic Particle Spectrometer, 161, 2018.
- [ BibTeX ]
-
Influence of Excitation Signal Coupling on Reconstructed Images in MPI, 47–48, 2018.
- [ BibTeX ]
-
First Measurement and SNR Results of a 3D Magnetic Particle Spectrometer, International Journal on Magnetic Particle Imaging, 4(1), 2018, DOI: 10.18416/IJMPI.2018.1810001.
- [ BibTeX ]
-
Applying Compressed Sensing on Hybrid System Matrices in Magnetic Particle Imaging, 81, 2017.
- [ BibTeX ]
-
Hybrid System Calibration for Multidimensional Magnetic Particle Imaging, Physics in Medicine and Biology, 62(9), 3392–3406, 2017, DOI: 10.1088/1361-6560/aa5340.
-
Two dimensional magnetic particle spectrometry, Physics in Medicine and Biology, 62(9), 3378–3391, 2017, DOI: 10.1088/1361-6560/aa5bcd.
-
First measured result of the 3D Magnetic Particle Spectrometer, 123, 2017.
- [ BibTeX ]
-
Imaging Characterization of MPI Tracers Employing Offset Measurements in a 2D Magnetic Particle Spectrometer, 114, 2016.
- [ BibTeX ]
-
Imaging Characterization of MPI Tracers Employing Offset Measurements in a two Dimensional Magnetic Particle Spectrometer, International Journal on Magnetic Particle Imaging, 2(1), 2016.
-
The Particle Response of Blended Nanoparticles in MPI, 115, 2016.
- [ BibTeX ]
-
Reconstruction of Experimental 2D MPI Data using a Hybrid System Matrix, 130, 2016.
- [ BibTeX ]
-
Optimizing the Coil Setup for a Three-Dimensional Magnetic Particle Spectrometer, 59, 2016.
- [ BibTeX ]
-
Magnetic particle imaging: current developments and future directions, International Journal of Nanomedicine, 10, 3097–3114, 2015, DOI: 10.2147/ijn.s70488.
-
Dynamic Single-Domain Particle Model for Magnetite Particles with Combined Crystalline and Shape Anisotropy, Journal of Physics D: Applied Physics, 48(27), 275001, 2015, DOI: 10.1088/0022-3727/48/27/275001.
-
Trajectory Dependent Particle Response for Anisotropic Mono Domain Particles in Magnetic Particle Imaging, Journal of Physics D: Applied Physics, 49(4), 2015, DOI: 10.1088/0022-3727/49/4/045007.
-
A Device for Measureing the Trajectorey Dependent Magnetic Particle Performance for MPI, 2015, DOI: 10.1109/IWMPI.2015.7107078.
-
Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry, Current Directions in Biomedical Engineering, 1(1), 298–301, 2015, DOI: 10.1515/cdbme-2015-0074.
-
Magnetic particle imaging: kinetics of the intravascular signal in vivo, International Journal of Nanomedicine, 4203–4209, 2014, DOI: 10.2147/ijn.s49976.
-
Analog receive signal processing for magnetic particle imaging, Medical Physics, 40(4), 042303, 2013, DOI: 10.1118/1.4794482.
-
Cancellation techniques for MPI, 2013, DOI: 10.1109/IWMPI.2013.6528331.
-
Investigation of Different Tissue Samples with ΜCT and MPS for Determination of Iron Oxide Concentration in Tracers for MPI, 2013, DOI: 10.1515/bmt-2013-4100.
-
Signal separation in magnetic particle imaging, 2483–2485, 2012, DOI: 10.1109/NSSMIC.2012.6551566.
-
Determination of System Functions for Magnetic Particle Imaging, 59–64, 2012, DOI: 10.1007/978-3-642-24133-8_10.
-
A Control Unit for a Magnetic Particle Spectrometer, 309–312, 2012, DOI: 10.1007/978-3-642-24133-8_49.
-
Determination of a 1D-MPI-System-Function using a Magnetic Particle Spectroscope, 2011.
- [ BibTeX ]
-
Current Iron Oxide Nanoparticles - Impact on MRI and MPI, 12, 2010.
- [ BibTeX ]
-
A Spectrometer to Measure the Usability of Nanoparticles for Magnetic Particle Imaging, 60–65, 2010.
- [ BibTeX ]
-
Improved Estimation of the Magnetic Nanoparticle Diameter with a Magnetic Particle Spectrometer and Combined Fields, 954, 2010.
- [ BibTeX ]
-
Estimation of Magnetic Nanoparticle Diameter with a Magnetic Particle Spectrometer, 61–64, 2009, DOI: 10.1007/978-3-642-03887-7_17.
-
Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging, Journal of Physics D: Applied Physics, 42(20), 205007, 2009, DOI: 10.1088/0022-3727/42/20/205007.
-
The Influence of the Particle-Size Distribution on the Image Resolution in Magnetic Particle Imaging, 499, 2009.
- [ BibTeX ]
-
A Study on the Performance of Different Superparamagnetic Iron Oxide Particles in Magnetic Particle Imaging, 709, 2009.
- [ BibTeX ]